磁控管工作原理是什么?



				
				
两小酒窝
33202 次浏览 2024-06-19 提问
145

最新回答 (5条回答)

2024-06-21 15:57:10 回答

磁控管通常工作在π模,相邻两个谐振腔腔口处微波电场相位正好相差180°,即微波电场方向正好相反。虽然这种微波场为驻波场,但在π模的情况下,相当于两个相同的微波场在圆周上沿相反的方向运动,两个场的相速值相等。从阴极发射出的电子在正交电磁场作用下作轮摆线运动。

2024-06-21 15:57:10 回答

磁控管实质上是一个置于恒定磁场中的二极管。管内电子在相互垂直的恒定磁场和恒定电场的控制下,与高频电磁场发生相互作用,把从恒定电场中获得能量转变成微波能量,从而达到产生微波能的目的。

2024-06-21 15:57:10 回答

磁控管是一种用来产生微波能的电真空器件。实质上是一个置于恒定磁场中的二极管。管内电子在相互垂直的恒定磁场和恒定电场的控制下,与高频电磁场发生相互作用,把从恒定电场中获得能量转变成微波能量,从而达到产生微波能的目的。  磁控管由于工作状态的不同可分为脉冲磁控管和连续波磁控管两类。    磁控管由管芯和磁钢(或电磁铁)组成。管芯的结构包括阳极、阴极、能量输出器和磁路系统等四部分。管子内部保持高真空状态。下面分别介绍各部分的结构及其作用。  1.阳极    阳极是磁控管的主要组成之一,它与阴极一起构成电子与高频电磁场相互作用的空间。在恒定磁场和恒定电场的作用下,电子在此空间内完成能量转换的任务。磁控管的阳极除与普通的二极管的阳极一样收集电子外,还对高频电磁场的振荡频率起着决定性的作用。  阳极由导电良好的金属材料(如无氧铜)制成,并设有多个谐振腔,谐振腔的数目必须是偶数,管子的工作频率越高腔数越多。    阳极谐振腔的型式常为孔槽形、扇形和槽扇型,阳极上的每一个小谐振腔相当于一个并联的LC振荡回路。以槽扇型腔为例,可以认为腔的槽部分主要构成振荡回路的电容,而其扇形部分主要构成振荡回路的电感。    磁控管的阳极由许多谐振腔耦合在一起,形成一个复杂的谐振系统。这个系统的谐振腔频率主要决定于每个小谐振腔的谐振频率,我们也可以根据小谐振腔的大小来估计磁控管的工作频段。                                                                                            磁控管的阳极谐振系统除能产生所需要的电磁振荡外,还能产生不同特性的多种电磁振荡。为使磁控管稳定的工作在所需的模式上,常用隔型带来隔离干扰模式.隔型带把阳极翼片一个间隔一个地连接起来,以增加工作模式与相邻干扰模式之间的频率间隔。    另外,由于经能量交换后的电子还具有一定的能量,这些电子打上阳极使阳极温度升高,阳极收集的电子越多(即电流越大),或电子的能量越大(能量转换率越低),阳极温度越高,因此,阳极需有良好的散热能力.一般情况下功率管采用强迫风冷,阳极带有散热片.大功率管则多用水冷,阳极上有冷却水套。  2.阴极及其引线    磁控管的阴极即电子的发射体,又是相互作用空间的一个组成部分。阴极的性能对管子的工作特性和寿命影响极大,被视为整个管子的心脏。    阴极的种类很多,性能各异。连续波磁控管中常用直热式阴极,它由钨丝或纯钨丝绕成螺旋形状,通电流加热到规定温度后就具有发射电子的能力。这种阴极具有加热时间短和抗电子轰击能力强等优点,在连续波磁控管中得到广泛的应用。    此种阴极加热电流大,要求阴极引线要短而粗,连接部分要接触良好。大功率管的阴极引线工作时温度很高,常用强迫风冷散热。磁控管工作时阴极接负高压,因此引线部分应有良好的绝缘性能并能满足真空密封的要求。为防止因电子回轰而使阳极过热,磁控管工作稳定后应按规定降低阴极电流以延长使用寿命。  3.能量输出器    能量输出器是把相互作用空间中所产生的微波能输送到负载去的装置。    能量输出装置的作用是无损耗,无击穿地通过微波,保证管子的真空密封,同时还要做到便于与外部系统相连接。

2024-06-21 15:57:10 回答

磁控管工作原理
磁控管的阳极谐振系统除能产生所需要的电磁振荡外,还能产生不同特性的多种电磁振荡。为使磁控管稳定的工作在所需的模式上,常用"隔型带"来隔离干扰模式.隔型带把阳极翼片一个间隔一个地连接起来,以增加工作模式与相邻干扰模式之间的频率间隔。另外,由于经能量交换后的电子还具有一定的能量,这些电子打上阳极使阳极温度升高,阳极收集的电子越多(即电流越大),或电子的能量越大(能量转换率越低),阳极温度越高,因此,阳极需有良好的散热能力.一般情况下功率管采用强迫风冷,阳极带有散热片.大功率管则多用水冷,阳极上有冷却水套。此种阴极加热电流大,要求阴极引线要短而粗,连接部分要接触良好。大功率管的阴极引线工作时温度很高,常用强迫风冷散热。磁控管工作时阴极接负高压,因此引线部分应有良好的绝缘性能并能满足真空密封的要求。为防止因电子回轰而使阳极过热,磁控管工作稳定后应按规定降低阴极电流以延长使用寿命。
磁控管的阴极即电子的发射体,又是相互作用空间的一个组成部分。阴极的性能对管子的工作特性和寿命影响极大,被视为整个管子的心脏。阴极的种类很多,性能各异。连续波磁控管中常用直热式阴极,它由钨丝或纯钨丝绕成螺旋形状,通电流加热到规定温度后就具有发射电子的能力。这种阴极具有加热时间短和抗电子轰击能力强等优点,在连续波磁控管中得到广泛的应用。
磁控管正常工作时要求有很强的恒定磁场,其磁场感应强度一般为数千高斯。工作频率越高,所加磁场越强。磁控管的磁路系统就是产生恒定磁场的装置。磁路系统分永磁和电磁两大类。永磁系统一般用于小功率管,磁钢与管芯牢固合为一体构成所谓包装式。大功率管多用电磁铁产生磁场,管芯和电磁铁配合使用,管芯内有上、下极靴,以固定磁隙的距离。磁控管工作时,可以很方便的靠改变磁场强度的大小,来调整输出功率和工作频率。另外,还可以将阳极电流馈入电磁线包以提高管子工作的稳定性。
磁控管的正确使用
磁控管是微波应用设备的心脏,因此,磁控管的正确使用是维护微波设备正常工作的必要条件。磁控管在使用时应注意以下几个问题:
一、负载要匹配。
无论什么设备都要求磁控管的输出负载尽可能做到匹配,也就是它的电压驻波比应尽可能的小。驻波大不仅反射功率大,使被处理物料实际得到的功率减少,而且会引起磁控管跳模和阴极过热,严重时会损坏管子。跳模时,阳极电流忽然出现跌落。引起跳模的原因除管子本身模式分隔度小外,主要有以下几个方面:(1)电源内阻太大,空载高而激起非π模式。(2)负载严重失配,不利相位的反射减弱了高频场与电子流的相互作用,而不能维持正常的π模振荡。  (3)灯丝加热不足,引起发射不足,或因管内放气使阴极中毒引起发射不足,不能提供π模振荡所需的管子电流。为避免跳模的发生,要求电源内阻不能过大,负载应匹配,灯丝加热电流应符合说明书要求。
二、冷却。
 冷却是保证磁控管正常管工作的条件之一,大功率磁控管的阳极常用水冷,其阴极灯丝引出部分及输出陶瓷窗同时进行强迫风冷,有些电磁铁也用风冷或水冷。冷却不良将使管子过热而不能正常工作,严重时将烧坏管子。应严禁在冷却不足的条件下工作。
三、合理调整阴极加热功率。
磁控管起振后,由于不利电子回轰阴极使阴极温度升高而处于过热状态,阴极过热将使材料蒸发加剧,寿命缩短,严重时将烧坏阴极。防止阴极过热的办法是按规定调整降低阴极加热功率。
微波炉磁控管结构
微波炉加热、烹饪食物所需的微波能量是由核心元件--磁控管产生的。目前广泛应用于微波炉的是连续波强迫风冷型磁控管,其基本结构剖视如图所示。由右图
可见,磁控管是由阴极(灯丝)、阳极、环形磁钢、耦合环、天线(即微波能量输出器)、散热器和灯丝插头等组成。其中阳极呈圆筒状,通常用铜材制成,筒中多个翼片将阳极分割成十几个扇形空间,每个扇形空间就是一个阳极谐振腔,其谐振频率即磁控管的工作频率,一般为2450MHz左右。在阳极的外壳嵌套了一对环形永久磁钢,磁钢形成的磁场用于控制阳极腔内的微波振荡能量。阳极输出的微波能量通过一根环状金属管(即耦合环)传送到天线,再由天线向炉内发送微波能,对食物进行加热。
微波炉磁控管的灯丝工作电压一般为交流3.3V,电流10A左右;阳极(对阴极)电压为直流4000V左右。磁控管通电工作时,灯丝被加热,同时在阴极(灯丝)与阳极间形成高压电场,在电场作用下,阴极向阳极发射电子,阳极接收到电子而产生阳极电流。电子在到达每个扇形阳极谐振腔时,按其谐振频率振荡,同时因环形磁钢产生的恒定磁场垂直于高压电场方向,在该磁场作用之下,电子沿着阴极、阳极间的圆周空间作摆轮曲线运动,形成一个积聚能量的旋转电子云,并向阳极不断输送,从而在阳极上获得稳定的每秒振动频率约为24.5亿次的微波振荡能量。微波能量的大小主要取决于阳极电压的高低和磁场的强弱,由于环形磁钢的磁场强度恒定,故而微波输出功率主要与阳极电压相关。但若磁钢因故破裂或磁性明显衰退,就会引起磁控管输出功率减小,微波炉加热效果变差,出现加热慢、火力不足等故障,维修时一定要注意这方面的问题。  磁控管工作时的动态导通内阻很小,阳极电压的波动对微波输出功率影响很大,这将明显影响微波炉的加热性能。为了避免因电源电压波动而导致微波炉工作不稳定,磁控管阳极电压通常都由漏感变压器组成的电源电路来提供,它可稳定磁控管的阳极电流,使微波炉输出功率保持稳定。
磁控管的微波转换效率为70%左右,工作时其余30%左右的功率变成了热量,在管子上耗散,因功率大、温升较高,所以微波炉中都设置了冷却风扇,对磁控管进行强迫风冷散热,以防止过热损坏。

2024-06-21 15:57:10 回答

磁控管工作原理是磁控管内部电子在相互垂直的恒定磁场和恒定电场控制下,与高频电磁场发生相互作用,把从恒定电场中获得能量转变成微波能量,从而达到产生微波能的目的。磁控管(Magnetron)是一种用来产生微波能的电真空器件,实质为一个置于恒定磁场中的二极管  ,

相关问题

页面运行时间: 0.064735889434814 秒